JavaScript 中的异步编程方式与实践


李志文

2022/03

目录概览


  • 一、为什么要异步编程
  • 二、实现异步编程的几种方式
  • 三、JavaScript 异步编程实践
  • FAQ

一、为什么要异步编程

IO 操作:外部设备访问

  • 文件存取
  • TCP/UDP 网络访问
  • More...

异步 API

  • setTimeout / setInterval
  • requestAnimationFrame
  • requestIdleCallback
  • queueMicrotask
  • setImmediate
  • process.nextTick
  • Event
  • ...

二、实现异步编程的几种方式


  1. 回调函数
  2. Promise
  3. async + await
  4. 事件监听 / 观察者模式

2.1 回调函数

const fs = require('fs');

fs.readFile('./a.txt', (err, data) => {
    if(err) {
        console.log('readFile.error:', err);
    } else {
        fs.readFile('./b.txt', (err1, data1) => {
            if (err1) {
                console.log('readFile.error:', err1);
            } else {
                return data + data1;
            }
        });
    }
});
  • 特点
    • 基础语法特性、高性能
    • 问题:回调地狱,调用逻辑异常复杂

2.2 Promise

// Promise:示例一
fs.promises.readFile('./a.txt', 'utf8')
  .then(a => fs.promises.readFile('./b.txt', 'utf8').then(b => a + b))
  .then(result => console.log(result));
  .catch (err => {console.log(err));
// Promise:封装示例
function readFile(path) {
  return new Promise((resolve, reject) => {
    fs.readFile(path, (err, data) => err ? reject(err) : resolve(data));
  });
}

readFile('./a.txt')
  .then(a => readFile('./b.txt').then(b => a + b))
  .then(result => console.log(result))
  .catch(err => console.error(err));
  • 优缺点
    • ESNext => 几乎是所有新语法异步 API 的基础
    • then 回调并不简洁

2.3 async + await

try {
  const a = await fs.promises.readFile('./a.txt', 'utf8');
  const b = await fs.promises.readFile('./b.txt', 'utf8');
  const result = a + b;
  console.log(result);
} catch (err) {
  console.log(err);
}
  • 特点
    • 语法糖:基于 Promise 的基础支持
    • 如编写同步代码般进行异步编程
    • More...

2.4 事件监听与处理


const uid = uuid.v4();
const payload = {...};
workerChannel.postMessage({ uid, payload });
workerChannel.once(uid, (result) => console.log(result));
  • 特点
    • 逻辑分离,简化模块间依赖调用
    • 具有不可控性
    • 涉及多变量因子的复杂场景下,上层逻辑变动、订阅依赖顺序等容易逻辑混乱

3. JavaScript 异步编程实践


  • 常见应用场景与方法
  1. 延迟处理:并发性能、避免 IO 阻塞
  2. Promise 化
  3. 使用 async + await
  4. 防抖与节流
  5. More...

3.1 延迟处理

// delay 封装:callback 模式
function delay(timeout = 0, callback: () => void) {
  setTimeout(() => callback(), timeout);
}
// delay 封装:Promise 模式
function delay(timeout = 0) {
  return new Promise(resolve => setTimeou(() => resolve(), timeout));
}

await delay(3_00).then(() => callback());
callback();
// sleep 封装:TS 类型、回调值支持
export const sleep = <T>(timeout = 0, value?: T | (() => T | Promise<T>)): Promise<T> =>
    new Promise(resolve => setTimeout(() => resolve(), timeout))
      .then(() => typeof value === 'function' ? value() : value);

await sleep(3_000, 1);

3.2 事件监听与订阅的 Promise 化


function request(payload) {
  return new Promise(resolve => {
    const uid = uuid.v4();
    workerChannel.postMessage({ uid, payload });
    workerChannel.once(uid, (result) => resolve(result));
  });
}

request({...}).then(body => console.log(body));

问:如何实现超时处理?

setTimeout 与超时处理


function request(payload, timeout = 5_000) {
  return new Promise(resolve => {
    const uid = uuid.v4();
    const timer = setTimeout(() => resolve({ errmsg: 'timeout' }), timeout);
    workerChannel.once(uid, (result) => {
      clearTimeout(timer);
      resolve(result);
    });
    workerChannel.postMessage({ uid, payload });
  });
}

request({...}).then(body => console.log(body));

问:如何实现超时处理的通用性封装?

超时处理的通用性封装:raceTimeout



export function raceTimeout<T>(promise: Promise<T>, timeout: number, onTimeout?: () => T | undefined): Promise<T | undefined> {
    let timer: NodeJS.Timer;

    return Promise.race([
        promise.finally(() => clearTimeout(timer)),
        new Promise<T | undefined>(resolve => {
            timer = setTimeout(() => resolve(onTimeout?.()), timeout);
        }),
    ]);
}

超时处理的通用性封装:raceTimeout - 示例


// 通过 `raceTimeout` 调用 `request` 处理超时:
raceTimeout(request({...}), 3_000, () => ({ errmsg: 'timeout' }))
  .then(body => console.log(body));
// 使用 `raceTimeout` 封装通用超时处理:
function request(payload, timeout = 5_000) {
  const p = new Promise(resolve => {
    const uid = uuid.v4();
    workerChannel.postMessage({ uid, payload });
    workerChannel.once(uid, (result) => resolve(result));
  });
  return raceTimeout(p, timeout, () => ({ errmsg: 'timeout' }));
}

request({...}).then(body => console.log(body));

超时处理的通用性封装:timeoutDeferred


interface IScheduledLater extends IDisposable {
    isTriggered(): boolean;
}
function timeoutDeferred(timeout: number, fn: () => void): IScheduledLater {
    let scheduled = true;
    const handle = setTimeout(() => {
        scheduled = false;
        fn();
    }, timeout);
    return {
        isTriggered: () => scheduled,
        dispose: () => {
            clearTimeout(handle);
            scheduled = false;
        },
    };
}

使用 timeoutDeferred 封装通用超时处理 - 示例:

function request(payload, timeout = 5_000) {
  const p = new Promise(resolve => {
    const uid = uuid.v4();
    const deferred = timeoutDeferred(timeout, resolve({ errmsg: 'timeout' }));
    workerChannel.postMessage({ uid, payload });
    workerChannel.once(uid, (result) => {
      deferred.dispose();
      resolve(result);
    });
  });
}

request({...}).then(body => console.log(body));
  • 简单的使用并不比直接使用 setTimeout 简洁
  • timeoutDeferred 更便利的用处是在复杂逻辑流程中,基于不同的变量因子决定如何执行 deferred.dispose()

3.3 函数防抖(debounce) 与节流(throttle)


以邮政员送信为例:

  • 邮局接收信件 - letters = [];
  • 邮政员送信 - function deliver(){}

3.3 函数防抖(debounce) 与节流(throttle)

const letters = [];
/** 邮局接收信件 */
function onLetterReceived(l) {
  letters.push(l);
  deliver(); // 派送策略?
}
/** 邮政员派送信件 */
function deliver() {
  const lettersToDeliver = letters;
  letters = [];
  return makeTheTrip(lettersToDeliver);
}
  • 收到信件即执行 makeTheTrip。要求:
    • 收件频率低?
    • 有非常多的邮政员?
    • 送件速度快?
    • More...

3.3.1 lodash:: 函数防抖与节流

import { throttle, debounce } from 'lodash';

// 节流:100ms 内最多执行一次
const throttler = throttle(deliver, 100);

// 防抖:间隔 100ms 以上才触发
const debounced = debounce(deliver, 100);

// 防抖:高频调用 - 每隔 1s 至少会触发一次
const debounced = debounce(deliver, 100, { maxWait: 1000 });
  • 存在的问题:
    • 最佳取值:100ms1000ms 如何确定?
    • 无法实现 CPU 最大化利用
    • 无法较好的处理耗时幅度大的不确定任务调度

  • 为什么?
    • 主要原因:无法得知何时送信结束
    • callback:: 用回回调地狱模式?
    • 解决:不妨试试 Promise

3.3.2 Promise 式的防抖与节流

export class Throttler {
  /** 正在执行的任务句柄 */
  private activePromise: Promise<unknown> | null;
  /** 等待执行的任务句柄 */
  private queuedPromise: Promise<unknown> | null;
  /** 等待执行的任务 */
  private queuedPromiseFactory: ITask<Promise<unknown>> | null;
  public queue<T>(promiseFactory: ITask<Promise<T>>): Promise<T>;
}
const throttler = new Throttler();
/** 邮局接收信件 */
function onLetterReceived(l) {
  letters.push(l);
  throttler.queue(deliver);
}

Throttler:: 以节流方式执行 async 回调任务

  • 派送策略
    • 来信即送启动派送任务
    • 每次派送都拿走全部的邮件
    • 等待队列永远只缓存最新的一个任务 - queuedPromiseFactory

3.3.3 Sequencer:: 顺序的执行 async 回调任务

export class Sequencer {
    private current: Promise<unknown> = Promise.resolve(null);
    queue<T>(promiseTask: ITask<Promise<T>>): Promise<T> {
        return (this.current = this.current.then(
            () => promiseTask(),
            () => promiseTask()
        ));
    }
}
  • 特点
    • One By One
    • Throttler 的不同点:等待队列(queue)无限制
    • 简单的封装,方便的调用

3.3.4 区分多类型的顺序执行 async 任务


key 缓存不同类型的 Sequencer

export class SequencerByKey<TKey> {
    private promiseMap = new Map<TKey, Promise<unknown>>();
    queue<T>(key: TKey, promiseTask: ITask<Promise<T>>): Promise<T> {
        const runningPromise = this.promiseMap.get(key) ?? Promise.resolve();
        const newPromise = runningPromise
            .catch(() => {})
            .then(promiseTask)
            .finally(() => {
                if (this.promiseMap.get(key) === newPromise) {
                    this.promiseMap.delete(key);
                }
            });
        this.promiseMap.set(key, newPromise);
        return newPromise;
    }
}

3.3.5 防抖式的执行异步任务

export class Delayer<T> implements IDisposable {
    private deferred: IScheduledLater | null;
    private completionPromise: Promise<unknown> | null;
    private doResolve: ((value?: unknown | Promise<unknown>) => void) | null;
    private doReject: ((err: unknown) => void) | null;
    private task: ITask<T | Promise<T>> | null;

    constructor(public defaultDelay: number) {}
    trigger(task: ITask<T | Promise<T>>, delay = this.defaultDelay): Promise<T>;
    isTriggered(): boolean;
    cancel(): void;
}
const delayer = new Delayer(10_000);
const letters = [];
function letterReceived(l) {
  letters.push(l);
  delayer.trigger(() => makeTheTrip());
}

邮递员收到信时并不立即派送,只有一段时间内没有信件到达,才出去送信

优缺点:

  • 延迟执行
  • 有状态、可取消
  • 调用方式简洁,业务逻辑清晰
  • 缺点:高频调用一直被 cancel,不能及时调用

ThrottledDelayer:: 防抖 + 节流

邮递员很聪明,在出去送信之前,他会等待一定的时间(不会一直等待)。

export class ThrottledDelayer<T> {
    private delayer: Delayer<Promise<T>>;
    private throttler: Throttler;

    constructor(defaultDelay: number);
    trigger(promiseFactory: ITask<Promise<T>>, delay?: number): Promise<T> {
        return this.delayer.trigger(() => this.throttler.queue(promiseFactory), delay) as unknown as Promise<T>;
    }
    isTriggered(): boolean { return this.delayer.isTriggered(); }
    cancel(): void { this.delayer.cancel(); }
    dispose(): void { this.delayer.dispose(); }
}
  • 延迟执行高频任务:送信前等待一定的时间
  • 送信时新的延时任务以防抖的方式调用:delayer.triggerdelayer.completionPromise
  • 送信完成则立即进入下一次送信旅程:throttler.queuedPromise

3.3.7 Barrier:初始化前的调用屏障

创建一个初始状态为关闭、最后为永久打开的一个屏障。

export class Barrier {
    private _isOpen: boolean = false;
    private _promise: Promise<boolean>;
    private _completePromise!: (v: boolean) => void;
    constructor() {
        this._promise = new Promise<boolean>((c, _e) => {
            this._completePromise = c;
        });
    }
    isOpen(): boolean { return this._isOpen }
    open(): void {
        this._isOpen = true;
        this._completePromise(true);
    }
    wait(): Promise<boolean> { return this._promise }
}

问:邮政员尚未上班,如何处理触发的邮件投递任务?

const barrier = new Barrier();
async function letterReceived(l) {
  letters.push(l);
  await barrier.wait(); // 等待就绪后调用
  makeTheTrip();
}

// ...
barrier.open(); // 邮政员上班了
  • 优点:
    • 不使用创建缓冲区、等待回调等繁琐的方式
    • 调用链简化,逻辑简洁清晰

超时自动打开的屏障:AutoOpenBarrier


邮政员一直不来上班,如何自动启用备选方案?

export class AutoOpenBarrier extends Barrier {
    private readonly _timeout: NodeJS.Timer;
    constructor(autoOpenTimeMs: number) {
        super();
        this._timeout = setTimeout(() => this.open(), autoOpenTimeMs);
    }
    override open(): void {
        clearTimeout(this._timeout);
        super.open();
    }
}

3.3.9 retry 失败重试

async function retry<T>(task: ITask<Promise<T>>, delay: number, retries: number, validator?: (r: T) => boolean): Promise<T> {
    let lastError: Error | undefined;

    for (let i = 0; i < retries; i++) {
        try {
            const result = await task();
            if (!validator || validator(result)) return result;
        } catch (error) {
            lastError = error;
            await sleep(delay);
        }
    }

    throw lastError;
}
// `retry` 应用示例:
async function doLogin(): { success: boolean } {}
const result = await retry(doLogin, 1_000, 3, r => r.success);

4. 相关参考